Get the opportunity to grow your influence by giving your products or services prime exposure with Performance Magazine.

If you are interested in advertising with Performance Magazine, leave your address below.

Advertise with us
Free Webinar

Leveraging Natural Language Processing in the SMB Lending Process

FacebooktwitterlinkedinFacebooktwitterlinkedin

Image Source rawpixel.com via Freepik

Natural language processing (NLP) is a game-changer in small and medium-sized businesses (SMB) lending. SMB lending is widely considered a slow, protracted process that frustrates both borrowers and lenders. Unlike larger corporations, most SMBs are informal businesses with limited financial records. This requires borrowers to submit a plethora of both digital and paper- based legal documents, collateral deeds, financial reports, and even business plans—all of which need to be verified and analyzed meticulously to determine the lender’s credit worthiness. This makes it difficult for SMBs to access the much-needed financial products in a timely manner as the end-to-end loan process would take on average between three to six weeks to close.

To be profitable, the sector must also rely on the volume of borrowers while also  adhering to tight regulations set by the central  bank. This effort takes a lot of resources, especially manpower. With the addition of risk due to fraud and loan defaults, there is a need for a system that assists lenders simplifying such tedious processes while also maintaining overall credit quality, measured by KPIs such as % Loan delinquency and % Bank non performing loan and gross loan

Enter NLP, a form of artificial intelligence (AI) that allows computers to understand both spoken and written human language. NLP has a lot of potential due to its ability to automatically “read” and extract useful information from both structured data (ie. sales reports) and unstructured data (ie. social media data). According to a survey in 2023, NLP has been widely used for data recognition and extraction, human intention classification (ie.g. chatbots) and natural language generation (ie.g. ChatGPT). These solutions utilizations offer organizations increased in cost efficiency through improvements in key performance indicators (KPIs) such as % Process efficiency and # Process completion time.

Read More: The New Wave: How Bank Relationship Managers Embrace Technology to Build Trust

How NLP Can Optimize SMB Lending Efficiency

NLP has the potential to increase a bank’s business volume by increasing the number of loan applications and decreasing the time it takes to process each applications—measured using  KPIs such as  # New loan inquiries, # Process completion time, and % Process efficiency ratio. Its main role in the SMB lending process is automating menial tasks, including data extraction from many paper-based documents. 

Data points such as business history, revenue, expenses, and liabilities can be simultaneously extracted and validated from borrowers’ identification, bank statement, financial report, and business plans, reducing the effort it takes to go through these documents manually. These improvements can be measured using KPIs such as # Report processing time. In addition, NLP can also help streamline compliance and legal review processes as it can scan legal documents to ensure that they comply with regulatory requirements or identify any documents that need to be reassessed by lending officers.

NLP’s ability to “read” and analyze unstructured data can also enhance the credit risk assessment process. Information from news articles, social media posts, and financial news can be an additional layer of analysis that provides novel insights that traditional financial metrics might miss, such as economic and financial sentiment. Data-driven pricing analysis can also ensure that lenders recommend the most competitive interest rates to potential borrowers. 

NLP can also help integrate data from various sources, including emails, voice transcripts, and other communication channels, providing a comprehensive view of the applicant’s profile and history. This allows lending officers to focus on the analysis and information selection that would help credit approval, which can lead to improved scores in the # Loan officer productivity indicator.

Perhaps more exciting is the future development of AI from companies such as Thelightbulb, which would allow AI to “read minds” by collecting and analyzing unconscious, non-verbal responses, and other biometric cues. This would assist lending officers in analyzing the behavior of a potential borrower’s characteristics during interviews and knowing their customer’s process, which enhances credit risk assessment and helps lenders understand their customers’ needs.

Read More: Is the Pay-for-Performance Scheme in the Public Sector Effective?

Integrating NLP into SMB Lending Practices

Despite the numerous benefits of using NLP in the SMB lending process, the inherent risk of lending and the tight regulation mixed with the current capability of AI tools remind us that the role of humans remains very important in selecting and analyzing the right set of data. To ensure effective and cost-effective adoption of the technology, financial institutions must fully understand the specific part of the process they wish to enhance. This will involve implementing measurement tools and indicators that can quantify the amount of improvement the technology can bring to the table. Talents must also receive training, not only to operate the technology, but also to understand the boundaries between their expertise and AI capabilities. Furthermore, the company must also ensure that it already has an internal AI governance framework and regular audit systems in place to establish accountability and fairness in the use of technology. 

Click here for more in-depth articles and interviews that discuss how artificial intelligence can be integrated into strategy.

Key Safety Considerations for Generative AI Adoption in Business

FacebooktwitterlinkedinFacebooktwitterlinkedin
 

In May 2023, Samsung Electronics prohibited its employees from using generative artificial intelligence (AI) tools like ChatGPT. The ban was issued in an official memo, after discovering that staff had uploaded sensitive code to the platform, which prompted security and privacy concerns for stakeholders, fearing sensitive data leakage. Apple and several Wall Street Banks have also enforced similar bans.

While generative AI contributes to increased efficiency and productivity in businesses, what makes it susceptible to security risks is also its core function: taking the user’s input (prompt) to generate content (response), such as text, codes, images, videos, and audio in different formats. The multiple sources of data, the involvement of third-party systems, and human factors influencing the adoption of generative AI add to the complexity. Failing to properly prepare for and manage security and privacy issues that come with using generative AI may expose businesses to potential legal repercussions.

Safety depends on where data is stored

So, the question becomes, how can businesses use generative AI safely? The answer resides in where the user’s data (prompts and responses) gets stored. The data storage location in turn depends on how the business is using generative AI, of which there are two main methods. 

Off-shelf tools: The first method is to use ready-made tools, like OpenAI’s ChatGPT, Microsoft’s Bing Copilot, and Google’s Bard. These are, in fact, nothing but applications with user interfaces that allow them to interact with the base technology that is underneath, namely large language models (LLMs). LLMs are pieces of code that tell machines how to respond to the prompt, enabled by their training on huge amounts of data. 

In the case of off-the-shelf tools, data resides in the service provider’s servers—OpenAI’s in the instance of ChatGPT. As a part of the provider’s databases, users have no control over the data they provide to the tool, which can cause great dangers, like sensitive data leakage.

How the service provider treats user data depends on each platform’s end-user license agreement (EULA). Different platforms have different EULAs, and the same platform typically has different ones for its free and premium services. Even the same service may change its terms and conditions as the tool develops. Many platforms have already changed their legal bindings over their short existence.

In-house tools: The second way is to build a private in-house tool, usually by directly deploying one of the LLMs on private servers or less commonly by building an LLM from scratch.

Within this structure, data resides in the organization’s private servers, whether they are on-premises or on the cloud. This means that the business can have far more control over the data processed by its generative AI tool.

Ensuring the security of off-the-shelf tools 

Ready-made tools exempt users from the high cost of technology and talent needed to develop their own or outsource the task to a third party. That is why many organizations have no alternative but to use what is on the market, like ChatGPT. The risks of using off-the-shelf generative AI tools can be mitigated by doing the following:

Review the EULAs. In this case, it is crucial to not engage with these tools haphazardly. First, organizations should survey the available options and consider the EULAs of the ones of interest, in addition to their cost and use cases. This includes keeping an eye on the EULAs even after adoption as they are subject to change.

Establish internal policies. When a tool is picked for adoption, businesses need to formulate their own policies on how and when their employees may use it. This includes what sort of tasks can be entrusted to AI and what information or data can be fed into the service provider’s algorithms.

As a rule of thumb, it is advisable not to throw sensitive data and information into others’ servers. Still, it is up to each organization to settle on what constitutes “sensitive data” and what level of risk it is willing to tolerate that can be weighed out by the benefits of the tool adoption.

Ensuring the security of in-house tools 

The big corporations that banned the use of third-party services ended up developing their internal generative AI tools instead and incorporated them into their operations. In addition to the significant security advantages, developing in-house tools allows for their fine-tuning and orienting to be domain and task-specific, not to mention gaining full control over their interface user experience.

Check the technical specifications. Developing in-house tools, however, does not absolve organizations from security obligations. Typically, internal tools are built on top of an LLM that is developed by a tech corporation, like Meta AI’s LLaMa, Google’s BERT, or Hugging Face’s BLOOM. Such major models, especially open-source ones, are developed with high-level security and privacy measures, but each has its limitations and strengths. 

Therefore, it would still be crucial to first review the adopted model’s technical guide and understand how it works, which would not only lead to better security but also a more accurate estimation of technical requirements.

Initiate a trial period. Even in the case of building the LLM from scratch, and in all cases of AI tool development, it is imperative to test the tool and enhance it both during and after development to ensure safe operation before being rolled out. This includes fortifying the tool against prompt injections, which can be used to manipulate the tool to perform damaging cyber-attacks that include leaking sensitive data even if they reside in internal servers.

Parting words: be wary of hype

While on the surface, the hype surrounding generative AI offers vast possibilities, lurking in the depths of its promise are significant security risks that must not be overlooked. In the case of using ready-made tools, rigorous policies should be formulated to ensure safe usage. And in the case of in-house tool deployment, safety measures must be incorporated into the process to prevent manipulation and misuse. In both cases, the promises of technology must not blind companies to the very real threat to their sensitive and private information.

THE KPI INSTITUTE

The KPI Institute’s 2024 Agenda is now available! |  The latest updates from The KPI Institute |  Thriving testimonials from our clients |