Get the opportunity to grow your influence by giving your products or services prime exposure with Performance Magazine.

If you are interested in advertising with Performance Magazine, leave your address below or contact us at: marketing@smartkpis.com.

Advertise with us
logo1 KPI Certified

Linking Big Data Visualization to the Value of KPIs

Facebooktwittergoogle_pluslinkedinFacebooktwittergoogle_pluslinkedin

Given that we live in a time of data and information overload, we really need to have better mechanisms to make sense of it all. Data visualization supports the transfer of information to knowledge by illustrating hidden issues and opportunities in big data sets.

Big data is creating unrivaled opportunities for businesses, aiding them to achieve faster and deeper insights that can strengthen the decision making process, improve customer experience, accelerate the speed of innovation and gain a competitive advantage.

A significant amount of the human brain is dedicated to visual processing, resulting in our sight having a sharpness of perception far surpassing our other senses. Effective data visualization shifts the balance between perception and cognition. The visual cortex is used at a higher capacity and the viewer understands the presented information much quicker, better and is able to make a superior decision based on the findings.

Businesses are increasingly turning to data visualization to discover the overwhelming amount and variety of data cascading into their operations, and to eliminate the struggle of just storing the data and focus on how to analyze, interpret and present it in a meaningful way. The trend towards data visualization is worth delving into by any business seeking to derive more value from big data.

The IBM framework for tackling big data focuses on “the four “V’s” (volume, velocity, variety and veracity), but does not emphasize enough another “V” that requires attention, namely visualization. Even with the use of business intelligence tools and the incredible exponential increase in computer power, the need to consume information in a meaningful manner exceeds the ability to process it.

Visualization plays a key role starting from the raw input of the big data, where structures and underlying patterns that may be held within the data can be observed or formed, to the end result of a visual representation that presents valuable key insights in a fast, efficient and clever manner.

Crafting a visualization is more than simply translating a table of data in a visual display. Data visualization ought to communicate information in the most effective way, with the prime purpose of truly revealing data in a quick, accurate, powerful and long-lasting manner.

The main problem with big data involves complexity. Information and data is growing exponentially with time, as an increasing amount of data is made available on the internet. Furthermore, the number of insights, opportunities or hypotheses hidden in a dataset is exponential to the size of the datasets.

Data visualization

In achieving efficiency and ensuring the comprehensibility of visual representation resulted from big data, KPIs can be used, as to attain the goal of graphical excellence and to add value to the end result. Big data visualization requires skills that are not intuitive and the entire process relies on principles that must be learned. Each big data visualization created should follow a clear path to success, namely: attain, define, structure, extract, load, display, refine the data and interact with it.

Key performance indicators add value to the entire process by ensuring clarity in developing the strategy of the project, focus on what matters and requires attention, as well as improvement by monitoring the progress towards the desired state.

When developing a project of big data visualization, the process should follow a cursive and pre-defined flow in accordance with the project needs and the requirements of the end-user. These recommended stages are:

1.Acquiring the data: this is usually how the process starts, unrelated with the platform which provides the data. In the process of big data collection, there is also the issue of data selection. Instead of “just throwing it all in”, one should focus on selecting high quality data, which is relevant to the project’s objective and does not add noise to the end result.

The noisier the data is, the more problematic it will be to see the important trends. It is suggested to have a clear strategy for the data sources required, as well as for the subsets of data relevant to the questions the project wants to answer to.


2.The next phase in the process refers to structuring of the acquired data. This includes the process of organizing the data to align it to one standard. The data store might be comprised of a combination of structured, semi-structured and unstructured data.

At this stage, it is easier to identify the common aspects in each sets of data and to find relationships between the data at hand. This includes translating system specific data coding to meaningful and usable data (the platform where the data will be aggregated does not know that the set of data labeled “Customer No.” is the same as “# Customer” or “ID-Customer”).


3.After cleaning the data, filtering through enormous amounts of data and replicating the application logic to make the data self-describing, the process continues with loading the data in the preferred platform and choosing the visual mode of representation.

In this stage, it can be noted if the background data is very noisy or high quality, as the emerging visual representation will be either hard to read or irrelevant to the strategic objective of the project, or clear and visually engaging.

By implementing key performance indicators along the project and linking them to the project objectives, the increased value will be added in the form of:

  • Better quality of the visual representations;
  • Fewer project delays;
  • Less rework along the way;
  • Improved productivity;
  • Greater contribution to the visuals’ value;
  • Enhanced growth and innovation of the visual representation;
  • Easier project assessment.

Image Source:

What is reverse logistics and how can it affect performance?
Improving operational performance at Metro
free

Tags: , ,

Comments (9)

  • moutaz alkalash

    |

    It is important and very difficult to deal with performance indicators, especially in large companies, where the issue of interconnection need to be everyone’s efforts to exceed “V’s” (volume, velocity, variety and veracity).
    Reason may be the failure to adopt the company’s performance indicators for the lack of confidence in the accuracy of the data collected.
    A mechanism for commitment to continuously review the data and correct it in the long run put the company earns reliable basis in the decision.

    Reply

  • Alaa Abu-Alrub

    |

    5. Article (5 ) – Linking big data visualization to the value of KPIs
    Clarify the Importance of data visualization in order to supports the transfer of information to knowledge by illustrating hidden issues and opportunities in big data sets and shifts the balance between perception and cognition, each big data visualization created should follow a clear path to success, namely: attain, define, structure, extract, load, display, refine the data and interact with it.
    Focus on the Stages for developing a project of big data visualization which include: Acquiring the data, structuring of the acquired data and loading the data in the preferred platform and choosing the visual mode of representation.

    Reply

  • Majdi Mohammed Saadeh Saadeh

    |

    The main problem with big data involves complexity. Information and data is growing exponentially with time, as an increasing amount of data is made available on the internet. Furthermore, the number of insights, opportunities or hypotheses hidden in a dataset is exponential to the size of the datasets

    Reply

  • amr abd elwahab

    |

    As much as the organization size increase, the difficulty and complexity of the data involved in the evaluation and dissension making increase.
    However; close monitoring and fully understanding of the system and the purpose will decrease the difficulty.

    Reply

  • amr abd elwahab

    |

    As much as the organization size increase, the difficulty and complexity of the data involved in the evaluation and dissension making increase.
    However; close monitoring and fully understanding of the system and the purpose will decrease the difficulty.

    Reply

  • ibrahim elhadidy

    |

    Focus on the Stages for developing a project of big data visualization which include: Acquiring the data, structuring of the acquired data and loading the data in the preferred platform and choosing the visual mode of representation.

    Reply

  • Nabeel Alrohily

    |

    As said in a KPI Institute course, “Data Visualization is an art”.

    Reply

  • ATHARI ISMAIL

    |

    Data is the raw and unprocessed facts that are usually in the form of numbers and text. Data can be quantitative (measured) or qualitative (observed). Data primarily exists in computer-friendly formats and mostly lives in databases and spreadsheets. Information is prepared data that has been processed, aggregated and organized into a more human-friendly format that provides more context. Information is often delivered in the form of data visualizations, reports and dashboards. Insights are generated by analyzing information and drawing conclusions. Both data and information set the stage for the discovery of insights that can then influence decisions and drive change.

    Reply

Leave a comment

THE KPI INSTITUTE

The KPI Institute’s 2017 Agenda is now available! |  The latest updates from The KPI Institute |  Thriving testimonials from our clients | 
× popup

We REWARD your opinion with a $138 PACKAGE of performance management resources

Take the survey!
Don't show this message again
Not now